An Image Encryption Scheme Based on Hybrid Orbit of Hyper-chaotic Systems

نویسنده

  • Junming Ma
چکیده

This paper puts forward a novel image encryption scheme based on ordinary differential equation system. Firstly, a hyper-chaotic differential equation system is used to generate two hyper-chaotic orbit sequences. Introducing the idea of hybrid orbit, two orbits are mixed to generate a hybrid hyper-chaotic sequence which is used to be the initial chaotic key stream. Secondly, the final encryption key stream is generated through two rounds of diffusion operation which is related to the initial chaotic key stream and plain-image. Therefore, the algorithm’s key stream not only depends on the cipher keys but also depends on plain-image. Last but not least, the security and performance analysis have been performed, including key space analysis, histogram analysis, correlation analysis, information entropy analysis, peak signal-to-noise ratio analysis, key sensitivity analysis, differential analysis etc. All the experimental results show that the proposed image encryption scheme is secure and suitable for practical image and video encryption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Encryption of Color Images based on Combination of Chaotic Systems

This paper presents a new method for encryption of color images based on a combination of chaotic systems, which makes the image encryption more efficient and robust. The proposed algorithm generated three series of data, ranged between 0 and 255, using a chaotic Chen system. Another Chen system was then started with different initial values, which were converted to three series of numbers from...

متن کامل

Image encryption based on chaotic tent map in time and frequency domains

The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...

متن کامل

A stack-based chaotic algorithm for encryption of colored images

In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four i...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

An improved hybrid image watermarking scheme in shearlet and wavelet domain

Watermarking is one of the best solutions for copyright protection and authentication of multimedia contents. In this paper a hybrid scheme is proposed using wavelet and shearlet transforms with singular value decomposition. For better security, Arnold map is used for encryption. Examining the results and comparing with other methods show that this hybrid proposed scheme with simultaneous utili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015